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Introduction

The primary goal of a virus is the replication of its
genome in an appropriate host cell and the production
of progeny virions for the infection of new target cells.
This effort is commonly met by antiviral responses by
the host organism, which in most cases abolishes or
limits virus infections. Viruses have developed different
strategies to overcome these restrictions, some causing
long-lasting chronic infections, others replicating in
fast, lytic cycles. However, all viruses depend to a large
degree on specific host factors, from the recognition of
specific cell-surface receptors required for virus entry
into a target cell to the packaging of cellular factors
into virions.

HIV penetrates target cells through fusion with the host
plasma membrane. This is followed by partial uncoating
and reverse transcription of the viral RNA, and subse-
quent integration of the double-stranded complemen-
tary DNA into the host genome. The integrated
provirus then serves as a template for the synthesis of
viral proteins, which ultimately assemble into progeny
virions that are released from the infected host cell. We
are far from understanding all of the complex virus–cell
interactions that take place during the HIV life cycle,
however, our current knowledge suggests that such
interactions occur at virtually every step of virus
replication. The past few years have brought rapid
progress in the identification and characterization of
novel host factors supporting HIV replication. In
particular, the recent identification of chemokine re-

ceptors as HIV co-receptors has significantly advanced
our understanding of HIV cell tropism and entry. Less
well defined, however, is the extent to which cellular
factors are involved in post-entry events required for
the establishment of a productive HIV infection.

Primate immunodeficiency viruses, including HIV-1,
are characterized by the presence of a number of viral
accessory genes that encompass vif, vpr, vpx, vpu, and nef.
The vif, vpr, and nef genes are expressed in most HIV-1,
HIV-2 and SIV isolates. In contrast, the vpu gene is
found exclusively in HIV-1 and some SIV isolates. The
vpx gene, on the other hand, is not found in HIV-1
isolates but is common to HIV-2 and most SIV isolates.
Defects in accessory genes are frequently not correlated
with a detectable impairment of virus replication in
continuous cell lines, in contrast to primary cell types,
which more closely reflect the in-vivo situation. How-
ever, it becomes increasingly clear that these proteins
exert important functions in their relevant target cells in
vivo, and most if not all of the HIV accessory proteins
seem to exert multiple independent functions. For most
of the HIV accessory and regulatory proteins the precise
biochemical mechanisms are still under investigation,
however, there is increasing evidence to suggest that
none of the HIV accessory or regulatory proteins has
catalytic activity on its own. Rather, they appear to
function as adapter molecules that connect other viral or
cellular factors to various cellular pathways. The goal of
the current review is to summarize recent progress in
the study of virus–host interactions involving the viral
Tat, Rev, and Vif proteins.
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Vif: overcoming a cellular restriction to
virus replication

Ever since its identification as a virus infectivity factor
in 1987 [1,2], the vif gene, which initially was termed
‘sor’ or ‘A’ [2], was the subject of intense research.
However, despite significant progress over the past 16
years, the biochemical function of Vif remains largely
unclear. A number of studies have attempted to reveal
the biochemical function of Vif, but have produced
somewhate conflicting results, and many reported
observations regarding Vif remain controversial. It is
now generally accepted, however, that Vif-defective
viruses are capable of entering target cells but encoun-
ter an early block in virus replication before integration
of the viral genome into the host genome. It is also
now generally accepted that Vif is packaged into viral
particles, although its functional significance is still
under investigation (Fig. 1, step 2). Nevertheless, a

recent analysis of the molecular defect in Vif-defective
HIV virions did not detect any apparent abnormalities
in Vif-defective virions, except for the lack of Vif [3].
There has been significant discussion regarding the
number of Vif molecules packaged into virions, with
estimates ranging from less than one molecule per
virion to as many as 100 molecules of Vif per virion. In
general, studies employing virus from chronically in-
fected cells or from stable cell lines reported lower
amounts of virus-associated Vif than studies using virus
from productively infected cells [4].

There is increasing evidence that the packaging of Vif
into virus particles is functionally relevant. First, Vif
packaging is specific and is mediated through an inter-
action with viral genomic RNA [5–7]. In addition,
virus-associated Vif interacts with Gag or Gag–Pol
precursor molecules [8] (K. Strebel, unpublished ob-
servation), and is stably associated with the viral
nucleoprotein complex [5,9,10]. Finally, virus-asso-
ciated Vif is proteolytically cleaved by the viral protease
at a conserved sequence located near the C-terminus of
the protein (residue 150 in HIV-1 Vif) [11]. Intravirion
processing of Vif is not restricted to HIV-1 Vif, but
was also observed for HIV-2 and some SIV Vif variants
(K. Strebel, unpublished observation). Of note is the
fact that mutations at or near the processing site that
affect Vif processing were also found to affect Vif
function, whereas mutations that did not affect Vif
processing did not affect Vif function [11]. Interest-
ingly, Vif processing separates the more conserved N-
terminus of Vif from its highly variable C-terminal
domain, which presumably contains a multimerization
domain [12,13] as well as the immunodominant epi-
tope. Removal of the C-terminal region of Vif induces
a conformational change in Vif (K. Strebel, unpub-
lished observation) that may expose new functional
domains in the protein.

Vif is a highly insoluble protein with a strong tendency
to aggregate. This characteristic has hampered efforts to
purify Vif protein for structural analyses. Therefore, in
contrast to most other HIV-encoded proteins, there are
currently no structural data available for Vif. Attempts
to define functional domains in Vif through biochem-
ical analyses have demonstrated that residues through-
out the protein are important for Vif function [14,15].
The only exception appears to be the very C-terminal
region of Vif, as evidenced by the fact that a natural
variant lacking the C-terminal 19 amino acids was
found to be biologically active [16]. These results
suggest that Vif contains multiple functional domains
that might be important for the interaction with viral
or cellular proteins. It is tempting to speculate that Vif,
like most other HIV regulatory and accessory proteins,
functions as a molecular adapter to connect otherwise
unrelated viral or cellular mechanisms. However, the
functionally relevant ligands of Vif have not yet been
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Fig. 1. Regulation of virus infectivity by Vif. Cells restrictive
for the replication of Vif-defective HIV express the cytidine
deaminase APOBEC3G. In the presence of Vif, intracellular
de novo synthesis of APOBEC3G appears to be inhibited
through a post-transcriptional mechanism (1). Vif is packaged
into virions and associates with the viral nucleoprotein com-
plex. Importantly, Vif inhibits the packaging of APOBEC3G
into virions (2) thus increasing virus infectivity. Such viruses
can enter a target cell (3), integrate into its host genome and
produce infectious progeny virions (4,5). In contrast, the
absence of Vif results in the packaging of APOBEC3G into
virus particles (6). Such virions are capable of penetrating a
target cell and initiate minus-strand cDNA synthesis [(�)-
cDNA]. However, APOBEC3G causes hypermutation of the
viral (�)-cDNA, resulting in the conversion of deoxycytidine
to deoxyuridine (7). Deoxyuridine residues in the viral cDNA
can be targeted by uracil-DNA glycosylase, which could lead
to endonucleolytic cleavage by endonucleases present in the
target cell (8). In an alternative model, hypermutated cDNA
enters the nucleus (9), and integrates into the host genome
but results in the production of defective or aberrant viral
proteins (4). This can lead to an impairment of virus assembly
or can result in the assembly of non-infectious viruses (5).
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defined. Also, the search for negative trans-dominant
Vif variants, which would support such a model, has so
far been unsuccessful [17].

Vif functions in a host cell-specific manner. Accord-
ingly, Vif-defective viruses produced in permissive host
cells are unrestricted and are thus capable of infecting
both permissive and non-permissive target cells. In
contrast, Vif-defective viruses grown in non-permissive
host cells were unable to infect permissive and non-
permissive target cells alike [18–24]. This suggests that
host factors play a significant role in restricting virus
replication. A number of host factors have been
identified as possible targets of Vif. These include
vimentin [10], HP68 [25], Hck [26], sp140 [27], and
CEM15 [28]. Importantly, the expression of Hck and
CEM15 appeared to be associated with the inhibition
of viral infectivity in a Vif-dependent manner [26,28].
However, only CEM15 expression was closely linked
to non-permissive cellular phenotypes, and, unlike
Hck, did not seem to have additional effects on virus
production. CEM15 thus represents to date the most
promising factor that fits most, if not all, of the
characteristics required of a protein associated with Vif-
dependent host cell restriction: it appears to be ex-
pressed exclusively in non-permissive cells, and further-
more, expression in permissive cells was found to
inhibit virus infectivity in the absence but not in the
presence of Vif [28,29].

CEM15 is identical to APOBEC3G and is a member
of the family of cytidine deaminases [30]. APOBEC3G
was found to have DNA cytidine deaminase activity in
vitro [31]. The physiological substrates of APOBEC3G
are not currently known; however, the tissue-specific
expression of APOBEC3G suggests a role in growth or
cell cycle control [30]. Interestingly, mutations in the
catalytic site of APOBEC3G were associated both with
decreased cytidine deaminase activity and a loss of the
inhibitory activity of APOBEC3G on HIV replication
[32,33]. Most recently, four research groups almost
simultaneously reported that APOBEC3G induces the
hypermutation of newly synthesized HIV DNA [32–
35], thus providing a plausible explanation for the
antiviral activity of APOBEC3G. All four reports noted
a significant increase in G to A mutations in the viral
genome (Fig. 1, step 6). As APOBEC3G-induced C to
U mutations will result in a G to A mutation on the
complementary strand, the observed G to A changes
are most consistent with hypermutation of the minus-
strand DNA rather than viral genomic RNA. Consis-
tent with this, a direct analysis of RNA from Vif-
defective virions produced in non-permissive H9 cells
without endogenous reverse transcription did not
reveal G to A hypermutation, whereas an analysis of
cDNA derived by endogenous reverse transcription of
the same viruses revealed G to A hypermutation
[32,35]. This suggests that all the factors involved in

hypermutation of HIV cDNA are present in virions
from non-permissive cells. Consistent with these re-
sults, APOBEC3G was found to be packaged into
HIV-1 virions [28,29,36]. Details of how APOBEC3G
interferes with the replication of Vif-defective HIV
have yet to be investigated. However, the observation
that APOBEC3G induced defects in Vif-defective
virions that became more and more severe with each
step of virus replication has led to the proposal that the
APOBEC3G-induced inhibition of HIV replication is
the cumulative result of multiple defects [33]. It is
possible that hypermutation of proviral DNA induces
aberrant stop codons or mutates viral proteins (Fig. 1,
step 9). More likely, however, seems to be the
possibility that deaminated minus strand DNA is
targeted by uracil-DNA glycosylase, which could result
in the degradation of viral DNA via a uracil-based
excision pathway [32,34], and could thus lead to
abortive infection typical of Vif-defective viruses (Fig.
1, step 8).

The mechanism by which Vif prevents hypermutation
by APOBEC3G is still under investigation. Data from
several groups, including our own, suggested that Vif
inhibits the packaging of APOBEC3G into HIV-1
particles in a dose-dependent manner [29,36] (Fig. 1,
step 2). Moreover, the inhibition of APOBEC3G
packaging requires biologically active Vif protein,
whereas a series of biologically inactive Vif variants,
including point mutants and in-frame deletions of
larger portions of Vif, did not affect APOBEC3G
packaging (Fig. 1, step 6). The inhibition of APO-
BEC3G packaging by wild-type Vif protein is paral-
leled by a reduction in the cell-associated expression
levels of APOBEC3G protein [29]. Interestingly, Vif
did not affect the expression level of APOBEC3G
messenger RNA [28,29], suggesting that Vif affects
APOBEC3G protein expression via a post-transcrip-
tional mechanism (Fig. 1, step 1). A major focus of
future research will undoubtedly be how Vif blocks
APOBEC3G-induced deamination of viral cDNA.
This should lead to a detailed understanding of Vif
function, and may reveal novel targets for antiviral
therapy.

Tat: making the connections

Because of its crucial role in activating viral gene
transcription, the HIV Tat protein has been a key focus
of HIV research for many years. It is now well accepted
that Tat functions as a molecular adapter, directing
components of the cellular transcription machinery to
the viral RNA to promote the processivity of transcrip-
tion by the RNA polymerase II complex. Tat is a small
protein of 101 amino acids that is expressed from a
multiply spliced RNA early during HIV replication.
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Tat contains several functional domains: residues 1–47
encompass the activation domain or co-factor-binding
domain, whereas the basic domain located between
residues 48 and 60 is required for RNA binding as well
as the nuclear transport of Tat [37]. In addition, the C-
terminal domain of Tat has been implicated in stimu-
lating the co-transcriptional capping of HIV-1 mRNA
through a direct interaction with the capping enzyme
MceI [38].

In the absence of Tat, transcription from the HIV-1
long-terminal repeat (LTR) produces predominantly
short, non-polyadenylated RNA that include the trans-
activation response region (TAR) stem-loop structure.
In contrast, the expression of Tat results in the produc-
tion of longer, polyadenylated RNA and in increased
gene expression [39–42]. The predominance of short
transcripts in the absence of Tat is most likely caused
by the poor processivity of RNA polymerase II
transcription complexes recruited to the viral LTR and
not, as was initially proposed, caused by an anti-
terminator activity of TAR (Fig. 2b, step 1). There is a
complex interplay between the positive transcription
elongation factor b (P-TEFb) and negative transcription
elongation factors 5, 6-dichloro-1-beta-D-ribofurano-
sylbenzimidazole sensitivity-inducing factor and the
negative elongation factor complex [43,44]. A key
factor in the regulation of RNA polymerase II is the
phosphorylation status of its carboxyterminal domain
(CTD). Hypophosphorylation of the CTD correlates
with low processivity of the RNA polymerase II
complex, whereas hyperphosphorylation of the CTD
promotes the processivity of the enzyme complex [45].
Phosphorylation of the CTD is regulated by P-TEFb
containing a CTD-specific kinase activity (Fig. 2b, step
3). The nuclear Tat-associated kinase [46], which was
originally identified as the kinase subunit of the P-
TEFb complex [47,48], was subsequently identified as
the cyclin-dependent kinase, CDK9 [49]. CDK9 can
interact with different cyclin partners, including cyclin
T1, cyclin T2a, cyclin T2b, and cyclin K [50]. How-
ever, Tat was found to recruit cyclin T1 selectively
into the Tat–P-TEFb complex in the process of
transcriptional activation from the HIV LTR promoter
[51] (Fig. 2b, step 2).

Unlike most transcriptional activators, Tat does not
bind to a DNA target but interacts with the TAR
element, an RNA structure located near the 5’-end of
the viral genome [37]. The TAR structure is an
unusual stem-loop structure containing a three-nucleo-
tide bulge (residues 23–25) and a six-nucleotide loop
(residues 30–35) (Fig. 2a). Originally, the TAR RNA
structure was mapped to residues 1–80 on the viral
RNA, however, the minimal sequence element re-
quired for Tat-responsiveness was subsequently nar-
rowed down to residues 19–42 (Fig. 2a) [52–54]. The
bulge structure in TAR is essential for the high-affinity

binding of Tat [55]. Earlier reports demonstrated that
mutations in the TAR loop of HIV-1 did not interfere
with Tat binding, but significantly reduced Tat transac-
tivation [55,56]. This suggested that the TAR loop acts
as a binding site for transcriptional co-factors. The
search for TAR loop binding proteins led to the
identification of cyclin T1. Unlike Tat, cyclin T1 alone
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Fig. 2. (a) Structure of trans-activation response region
RNA. Nucleotide residues are referred to in the text. (b)
Transcriptional activation by Tat. A key factor in the regula-
tion of transcription from the HIV-long-terminal repeat (LTR)
promoter by RNA polymerase II (RNApol II) is the phosphor-
ylation status of its carboxyterminal domain (CTD). Hypo-
phosphorylation of the CTD correlates with low processivity,
whereas hyperphosphorylation increases the processivity of
the enzyme complex. In the absence of Tat, transcription
from the HIV-1 LTR produces predominantly short RNA as a
result of the hypophosphorylated state of RNApol II and the
activity of 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole
sensitivity-inducing factor (DSIF) and negative elongation
factor complex (NELF), which bind to hypophosphorylated
RNApol II and inhibit transcriptional elongation (1). One of
the kinases involved in CTD phosphorylation is Cdk9, which
together with cyclin T1 constitutes the positive transcription
elongation factor b (P-TEFb). Tat binds to the trans-activation
response region (TAR) structure on the viral RNA and recruits
P-TEFb through binding to cyclin T1 (2). Recruitment of P-
TEFb to TAR induces hyperphosphorylation of CTD by Cdk9
and results in the dissociation of DSIF and NELF (3). Acetyla-
tion of Tat at Lys 50 creates a binding site for p300/CREB
binding protein-associated factor (PCAF) and promotes the
formation of a ternary complex of Tat-PCAF and P-TEFb. The
interaction of PCAF with acetylated Tat was found to com-
pete against TAR RNA binding of Lys50-acetylated Tat, and
causes its dissociation from TAR RNA, thereby enhancing the
transcriptional elongation of HIV-1 (4).
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does not bind to TAR RNA. However, the interaction
of Tat with cyclin T strongly enhances the affinity and
specificity of the Tat–TAR RNA interaction [57]. In
addition to the TAR bulge, at least one residue in the
TAR loop, G34, is critical for the binding of the cyclin
T1–Tat complex. G34 forms a base pair with residue
C30 of the TAR loop [58], creating a single-nucleotide
bulge at position 35 that is important for the overall
structure of the TAR element [58]. The binding of
cyclin T1 to Tat is zinc-dependent and involves a
cysteine at position 261 in human cyclin T1. None of
the other cysteine residues in human cyclin T1 are
involved in Tat binding [59]. In the Tat–TAR–cyclin
T1 complex, residues 252–260 of cyclin T1 form a
Tat-TAR recognition motif that interacts with one side
of the TAR RNA loop and enhances the interaction
of Tat lysine-50 to the other side of the loop [58]. The
TRM region of cyclin T1, when fused to Tat was
found to be sufficient for high-affinity binding to the
TAR recognition motif, and supported Tat transactiva-
tion in murine cells [59]. Interestingly, in murine cyclin
T1, which does not support Tat transactivation
[51,60–63], residue 261 is a tyrosine. Whereas murine
cyclin T1 can bind Tat with similar efficiency to
human cyclin T1, it is unable to form a functional P-
TEFb–Tat–TAR complex [61,62]. This defect may
explain the reported defect in HIV-1 transcription in
rodent cells [51,57,61,64].

P-TEFb plays an important role in the regulation of
mammalian gene expression. In that context, P-TEFb
can function independent of TAR or Tat. This raised
the question of why P-TEFb cannot activate the HIV-
1 promoter in the absence of Tat and TAR. Previous
data showed that TAR is only one component of the
Tat-responsive target. Efficient Tat transactivation was
observed only when TAR was present in conjunction
with the HIV-1 LTR nuclear factor kappa B/SP1
DNA sequences [65,66]. Furthermore, Tat was able to
mediate transcriptional activation in vitro through its
interaction with Sp1 [67]. It was therefore proposed
that TAR is required for Tat to stimulate the efficiency
of elongation by RNA polymerase II, whereas Sp1 and
other DNA sequence-specific transcription factors acti-
vate the rate of transcription initiation from the HIV
LTR promoter [39]. Consistent with this idea is the
observation that both murine and human cyclin T1 are
able to interact with SP1 to allow Tat/TAR indepen-
dent transcription, and that SP1 is necessary to recruit
cyclin T1 to the HIV-1 LTR [68]. Finally, it was
shown that the Tat-mediated assembly of active tran-
scription complexes is regulated by nuclear bodies
through modulation of the availability of cyclin T1 and
other co-factors at the site of transcription [69]. This is
supported by biochemical and biophysical analyses,
which suggest that cyclin T1 interacts with the pro-
myelocytic leukemia (PML) protein in vivo in PML
nuclear bodies [69].

Apart from its function in promoting the processivity
of RNA polymerase II, Tat has a function in remodel-
ing chromatin near the transcription start site. Inte-
grated proviral DNA is incorporated into the cellular
chromatin and covered at specific sequences with
nucleosomes [70]. Tat-mediated chromatin remodeling
involves the inhibition of cellular histone acetylases,
such as p300/CREB-binding protein (CBP), p300/
CREB binding protein-associated factor (PCAF), and
TIP60 [71–74]. In the case of CBP, Tat was found to
induce substrate selectivity and to inhibit the acetyla-
tion of histones by CBP severely. No effect was seen
on the basal level acetylation of other substrates, such as
p53 and MyoD [75], whereas ultraviolet-induced acet-
ylation of p53 was severely inhibited in HIV-infected
cells [76]. However, the ultraviolet-induced inhibition
of p53 acetylation by HIV infection was not strictly
correlated with the levels of Tat, suggesting that other
factors (e.g. Nef) might be involved in the stress-
induced p53 response [76]. Apart from its negative
effect on histone acetylation, Tat was found to promote
acetylation of the p50 subunit of nuclear factor kappa B
by p300/CBP, adding further evidence for the ability
of Tat to alter the substrate specificity of p300/CBP
[77].

Tat itself was found to be a substrate for acetylation by
p300/CBP and PCAF [78–81]. Acetylation was found
at lysine residues at positions 28, 50 and 51 [80]. As
lysines 50 and 51 of Tat are located in its RNA binding
motif, acetylation of these residues could regulate the
association of Tat and TAR or affect the stability of
Tat–TAR–cyclin T1 complexes. A mutation of lysines
50 and 51 in Tat was found to inhibit acetylation at
these sites, and significantly reduced Tat transactivation
[80]. The functional importance of Tat-acetylation is
still under investigation, however, it is possible that the
acetylation of Tat affects its three-dimensional structure
and could create or expose new protein binding
domains. Consistent with such a mechanism is the
recent observation that lysine 50-acetylated Tat can
bind to the transcriptional co-activator PCAF [81].
Such an interaction of PCAF with acetylated Tat was
found to compete against the TAR RNA binding of
lysine-acetylated Tat [82]. These data are consistent
with the model that Lys50 acetylation of Tat causes its
dissociation from TAR RNA, thereby enhancing the
transcriptional elongation of HIV-1 [79,80] (Fig. 2b,
step 4).

Apart from its crucial role in activating the transcription
of the HIV genome, Tat was associated with a number
of additional activities. Because of its unusual ability to
exit HIV-infected cells and enter uninfected bystander
cells, Tat has been investigated for its potential effect
on bystander cells. Extracellular Tat was found to
induce the production of cytokines such as transform-
ing growth factor beta, IL-2, or IL-6 [83–86], cause
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neurotoxicity in the central nervous system [87–93]
and apoptosis in cultured peripheral blood mono-
nuclear cells and at least one CD4 T-cell line [94–97].
On the other hand, Tat was found to upregulate the
anti-apoptotic gene Bcl-2 in infected primary human
macrophages, suggesting that in certain cell types, Tat
expression may contribute to cell survival [98]. Some
of these effects may be caused by an interaction of
extracellular Tat with specific cell-surface receptors that
trigger the activation of cellular signal transduction
pathways. However, some of these effects may also be
caused by Tat after internalization into uninfected
bystander cells. Tat was found to bind to tubulin and
polymerized microtubules in the cytoplasm of Jurkat
cells, altering microtubule dynamics and activating a
mitochondria-dependent apoptotic pathway [99]. Last
but not least, the two-exon form of Tat was found to
suppress reverse transcriptase activity during the late
stages of viral replication and to increase viral infectiv-
ity, presumably by preventing the premature synthesis
of viral DNA [100]. Finally, Tat was found to exhibit
RNA annealing activity and to promote the placement
of transfer RNA onto viral RNA, although the
significance of this observation for the in-vivo function
of Tat remains to be investigated [101].

Rev: shuttling viral RNA

Transcription in HIV takes place from a single promo-
ter located within the 5’-LTR. The resulting full-
length primary transcript functions both as genomic
RNA and as mRNA for the expression of the gag and
pol genes. Expression of genes downstream of gag/pol,
however, requires extensive splicing of the primary
transcript, resulting in a complex mixture of singly or
multiply spliced RNA. Unlike the fully spliced mRNA
species encoding Tat, Rev, and Nef, which are readily
transported to the cytoplasm, the export of unspliced
or partly spliced transcripts requires the activity of Rev.
The Rev protein contains an arginine-rich RNA
binding motif that binds to a stem-loop structure,
known as the Rev response element (RRE), located in
the env gene [102] (Fig. 3, step 1). The same arginine-
rich motif in Rev also acts as a nuclear localization
signal (NLS), which is required for the transport of
Rev from the cytoplasm to the nucleus. The Rev NLS
promotes the direct binding of the protein to the
nuclear import factor importin, which targets the
resultant protein complex to the nucleus [103] (Fig. 3,
step 2). In addition, the nucleolar phosphoprotein B23,
a putative ribosome assembly factor with affinity to
NLS-containing proteins, was found to play a role in
the nuclear import of Rev [104]. After transport to the
nucleus, the formation of multimeric complexes be-
tween Rev and its RRE-containing target RNA is
thought to displace B23 from Rev and to mask the

NLS [105,106]. The multimerization of Rev on the
RRE is initiated presumably by the high-affinity bind-
ing of the first Rev monomer to the Rev binding
element in the RRE structure, followed by the
cooperative binding of up to 12 additional Rev mono-
mers to the RRE region [107–109]. This cooperative
assembly of Rev on the RRE is thought to be
accomplished via a series of symmetrical tail-to-tail and
head-to-head protein–protein interactions [110].

The nuclear export of Rev–RRE complexes requires a
nuclear export signal (NES) that mediates the inter-
action of Rev with nuclear export factors. The Rev
NES is located in the C-terminal half of Rev, and
consists of a leucine-rich stretch of amino acid residues
[111,112]. The nuclear export of Rev–RRE com-
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After synthesis in the cytoplasm, Rev is rapidly transported to
the nucleus through an interaction of its arginine-rich nuclear
localization signal (NLS) with the nuclear import factor
importin � (Imp-�) (2). The same arginine-rich motif in Rev is
responsible for binding to the Rev response element (RRE),
located in the env gene (1). After transport to the nucleus, the
formation of multimeric complexes between Rev and its RRE-
containing target RNA is thought to mask the NLS and
expose a nuclear export signal that mediates the interaction
of Rev with nuclear export factors. The nuclear export of
Rev–RRE complexes involves Crm1 (3). Human Crm1 loca-
lizes to the nuclear pore complex and the nucleoplasm and
interacts with nuclear pore proteins. The association of Crm1
with Rev is thought to be regulated by Ran, a cellular
guanosine triphosphate (GTP)ase. In the nucleus, the chro-
matin-bound exchange factor RCC1 generates Ran-GTP (4),
whereas in the cytoplasm Ran-GTP is converted into Ran-
guanosine diphosphate through RanGAP1, a cellular GTPase
activating protein, resulting in a Ran-GTP gradient across the
nuclear membrane (5). The binding of RanBP1 to Ran-GTP
appears to be the key in catalysing the disassembly of Crm1–
Rev–Ran-GTP complexes in the cytoplasm (6). Ran-GTP
associated with RanBP is subsequently subjected to GTP
hydrolysis, thus preventing Crm1 from rebinding Ran-GTP.
This results in the release of Crm1 from Rev/RRE complexes.
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plexes involves Crm1, an evolutionary conserved
110 000 Mr protein that acts as a cellular receptor for
NES-containing proteins [113–115] (Fig. 3, step 3).
Human Crm1 localizes to the nuclear pore complex
(NPC) and the nucleoplasm and interacts with nuclear
pore proteins [116,117]. Crm1 was found to interact
with Rev–RRE complexes containing an intact Rev
NES but not with the M10 mutant of Rev containing
an inactive NES [118]. The association of Crm1 with
NES-containing proteins such as Rev is thought to be
regulated by Ran, a cellular guanosine triphosphate
(GTP)ase [113,115,119]. In the nucleus, the chroma-
tin-bound exchange factor RCC1 generates Ran-GTP,
which is the GTP-bound form of Ran (Fig. 3, step 4),
whereas in the cytoplasm Ran-GTP is converted into
Ran-guanosine diphosphate through RanGAP1, a cel-
lular GTPase-activating protein, resulting in a Ran-
GTP gradient across the nuclear membrane [119] (Fig.
3, step 5). It is believed that this asymmetric distribu-
tion of Ran-GTP plays a crucial role in nuclear import
and export. High nuclear Ran-GTP levels favor the
cooperative binding of Ran-GTP and NES-containing
proteins such as Rev to Crm1 [113]. Such complexes
are kinetically very stable, and their disassembly in the
cytoplasm requires an additional factor, RanBP1 [120].
The binding of RanBP1 to Ran-GTP appears to be
the key in catalysing the disassembly of the Crm1–
Rev–Ran-GTP complexes (Fig. 3, step 6). Ran-GTP
associated with RanBP is subsequently subjected to
GTP hydrolysis, thus preventing Crm1 from rebinding
Ran-GTP [120]. This results in the release of Crm1
from the Rev–RRE complexes.

In addition to Crm1, the nuclear export of Rev–RRE
complexes was found to require the eukaryotic initia-
tion factor (eIF-5A) [121]. The importance of eIF-5A
in the nuclear export of the Rev–RRE complexes is
highlighted by the fact that two non-functional mutants
of eIF-5A, still capable of interacting with Rev–RRE
complexes, were found to block Rev-mediated nuclear
export when constitutively expressed in human CEM
T cells [122]. In addition, microinjection experiments
in somatic cells confirmed the crucial role of eIF-5A in
nuclear export [121]. EIF-5A was found to be localized
at the nucleoplasmic face of the NPC, and to interact
specifically with nucleoporins CAN/nup214, nup153,
nup98 and nup62, which are involved in nuclear
export [123]. The precise role of eIF-5A in Rev
function remains to be defined; however, it was
proposed that eIF-5A may act as an adapter that targets
the Rev-NES to the nucleoplasmic face of the NPC,
and mediates efficient binding to CRM1 [123].

Another host factor implicated in Rev nuclear export is
SAM68. SAM68 was originally described as a
68 000 Mr Src-associated protein in mitosis [124], and
was found to promote the nuclear export of Rev in
astrocytes [125]. Using an antisense expression strategy

it was subsequently shown that the downmodulation of
endogenous Sam68 in 293T and Jurkat cells but also in
peripheral blood mononuclear cells significantly inhib-
ited HIV expression by inhibiting the CRM1-mediated
export of nuclear Rev, resulting in the nuclear reten-
tion of both Rev and Crm1 [126].

In conclusion, much progress has been made in under-
standing the molecular mechanisms of HIV regulatory
and accessory gene products. There is accumulating
evidence to suggest that all of the HIV accessory and
regulatory proteins share a common function as adapter
molecules to recruit cellular factors for various steps in
the viral replication cycle. In the case of Tat, the
recruitment of a variety of transcription factors to
nascent HIV RNA is crucial to promote the processiv-
ity of RNA polymerase II transcription. Rev on the
other hand has the ability to shuttle between the
cytoplasm and nucleus of HIV-infected cells through
reversible binding to nuclear import and export factors.
Nuclear Rev can binds to the RRE element on viral
RNA promoting their export from the nucleus to the
cytoplasm. Like Tat and Rev, Vif has the ability to
bind specifically to viral RNA, and was found to
interact with a variety of host factors. It is therefore
possible that Vif similarly functions as a molecular
adapter molecule. However, in contrast to Tat and
Rev, whose interaction with the TAR and RRE
structures, respectively, has been well established, the
RNA motif recognized by Vif is currently not well
defined. It also remains to be shown if and how the
interaction of Vif with viral RNA, as well as viral and
cellular proteins, is connected to the ability of Vif to
regulate viral infectivity.
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